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Abstract—Cloud computing has become an important driver
for delivering infrastructure as a service (IaaS) to users with
on-demand requests for customized environments and sophisti-
cated software stacks. Within the FutureGrid (FG) project, we
offer different IaaS frameworks as well as high performance
computing infrastructures by allowing users to explore them as
part of the FG testbed. To ease the use of these infrastructures,
as part of performance experiments, we have designed an
image management framework, which allows us to create user
defined software stacks based on abstract image management
and uniform image registration. Consequently, users can create
their own customized environments very easily. The complex
processes of the underlying infrastructures are managed by our
sophisticated software tools and services. Besides being able
to manage images for IaaS frameworks, we also allow the
registration and deployment of images onto bare-metal by the
user. This level of functionality is typically not offered in a
HPC (high performance computing) infrastructure. However, our
approach provides users with the ability to create their own
environments changing the paradigm of administrator-controlled
dynamic provisioning to user-controlled dynamic provisioning,
which we also call raining. Thus, users obtain access to a testbed
with the ability to manage state-of-the-art software stacks that
would otherwise not be supported in typical compute centers.
Security is also considered by vetting images before they are
registered in a infrastructure. In this paper, we present the design
of our image management framework and evaluate two of its
major components. This includes the image creation and image
registration. Our design and implementation can support the
current FG user community interested in such capabilities.

Keywords-Image Management; Image Repository; Dynamic
Provisioning; Rain; FutureGrid

I. INTRODUCTION

FutureGrid (FG) [1] is a testbed providing users with grid,
cloud, and high performance computing infrastructures. FG
employs both virtualized and non-virtualized infrastructures.
The testbed is composed of a high-speed network connected
to distributed clusters of high-performance computers. This
innovative infrastructure can support state-of-the-art research
in distributed and parallel computing including grid, cloud
computing, as well as HPC. As such, FG offers researchers
a flexible reconfigurable testbed to test functionality, perfor-
mance and interoperability of software systems in a repro-
ducible fashion. Users can customize their environment and
place suitable images onto the FG fabric. Therefore, users are
not locked into a specific computational environment offered
typically by HPC centers. Instead users may choose varieties

of software stacks which are packaged as part of abstract and
reusable images. Such images may provide additional services
while exposing platforms, libraries, and tools to users. Users
have the ability to select from a variety of preconfigured
images to suite their needs, and if these needs cannot be met,
users can create their own images and share them with the
community.

An important achievement of our image management frame-
work is the ability to support user-controlled dynamic provi-
sioning by allowing users to create, deploy, and register the
images not only in virtualized, but also in non-virtualized
infrastructures. Thus, they have access to bare-metal provision-
ing. This is a departure of the limited dynamic provisioning
provided by typical HPC centers where the administrator
governs control about images available for use. To support our
more general approach, we have designed and implemented a
set of tools expanding upon the traditional dynamic provision-
ing frameworks.

We use the term rain to indicate the process of placing a cus-
tomized environment onto resources. This is motivated by the
observations that the term dynamic provisioning is often not
consistently used in the community, and our user-controlled
dynamic provisioning drastically enhances the available func-
tionality to integrate bare-metal resources. The process of rain-
ing goes beyond the services offered by existing scheduling
tools due to its higher-level toolset targeting virtualized and
non-virtualized resources. We also use the term rain to refer to
the toolkit that combines a set of tools enabling the process of
raining. In this context managing various image management
workflows for a variety of distinct infrastructures becomes an
essential part of the overall components and services to support
rain.

In this paper, we will focus on a subset of issues related
to the process of raining that deal with image management. It
addresses every stage of the image management life cycle,
from the creation, adaptation, storage, registration, and the
instantiation of images into virtualized and non-virtualized
resources. Other aspects, such as the FG experiment manage-
ment framework to conduct scalability experiments using rain
are discussed in [2].

The rest of the paper is organized as follows. In Section
II, we present a brief background and related work. Next,
in Section III, we describe the processes involved in image
management. In Section IV we present our design and the tools



used to manage images for virtualized and non-virtualized
resources. Section V describes our implementation and Section
VI presents performance studies to evaluate characteristics of
our tools in the FG testbed. We conclude the paper in Section
VII with our findings and provide information about our future
activities.

II. BACKGROUND AND RELATED WORK

Image management is a key component in any modern com-
pute infrastructure, regardless if used for virtualized or non-
virtualized resources. We distinguish a number of important
processes that are integral part of the life-cycle management
of images. They include (a) image creation and customization,
(b) sharing the images via a repository, (c) registering the
image into the infrastructure, and (d) image instantiation (see
Figure 1). The problem of targeting not one, but multiple
infrastructures amplifies the need for tools supporting these
processes. Without them, only the most experienced users will
be able to manage them under great investment of time.
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Fig. 1. Process of the image management framework

There are two interplaying approaches to simplify access.
The first is the introduction of standards and best practices to
interface with the infrastructure. The second is to provide a
set of tools that interfaces with these standards and enables
exposure of common functionality to the users while hiding
the underlying complexities. Standards relevant for our efforts
include Open Virtualization Format (OVF) [3], which we plan
to integrate in our design. We are also aware and follow
developments of efforts such as Open Cloud Computing
Interface (OCCI) [4], that are not yet standards, but could
provide a uniform access to cloud infrastructures. However,
we have decided for now to focus our attention on the de facto
standard that is provided by the Amazon cloud API, which is
supported by all major cloud frameworks. Of relevance are
Nimbus [5], Eucalyptus [6], OpenStack [7], and OpenNebula
[8]. In case of HPC services we focused our attention on
Moab/xCAT [9], [10] due to its use within the XSEDE project
[11]. Alternatives to xCAT includes Chiba City [12], Cobbler
[13] or the recent Metal as a Service (MaaS) from Canonical
[14]. These infrastructures are supported by various tools on
the operating system level and configuration management tools
including Kickstart [15], Chef [16], Puppet [17] or Juju [18].
A number of tools have recently been developed that allow

the creation of images though a GUI or a Web interface such
as SUSE Studio [19] and Easyvmx [20].

One of the issues with such tools is they are limited and
bound to a particular infrastructure or have dependencies with
a particular operating system. While providing a higher-level
abstraction, we strive towards removing such dependencies
and offer users a tool that can integrate much more easily
with the different infrastructures.

III. PROCESSES

A number of processes need to be coordinated to properly
support abstract image management and universal image regis-
tration for cloud and HPC infrastructures. We explain in more
detail the activities conducted in each of the processes (see
Figure 1).

a) Creating and Customizing Images: Advanced users of
modern cyber-infrastructure demand creation and customiza-
tion of images to fit their particular needs. The image cre-
ation can be performed using either an interactive or a non-
interactive method.

In case of an interactive method, a virtual machine (VM)
image file is created as part of a user guided process. This
process delivers an image to be booted with an OS media
disk attached to it. It starts the installation process as if we
were installing a physical machine. This process is achieved
using tools provided by the hypervisors to create and boot
VMs.

The second method is non-interactive allowing us to au-
tomatize the process without user intervention as much as
possible. This automation is supported by the tools provided
in most of the Linux-based OSes to bootstrap images. They
basically install a fresh copy of the OS into a directory.
This installation will have the essential packages and binaries
needed in a base image and updates can be readily integrated.
Examples of these tools are debootstrap in Debian/Ubuntu,
yum in CentOS/RedHat and febootstrap in Fedora.

The problem of the first method lies in the need of human
interaction that prevents us from automating either the process
or integrating it with other software. Moreover, they produce
images aimed for a specific purpose, which will be compatible
with a particular hypervisor or acting as liveCD. On the other
hand, the second method is very flexible and allows us not
only to integrate it with other software, but also to establish
a clear separation between image creation and customization
for a specific infrastructure.

While separating the steps, which are dependent on a
specific infrastructure, it becomes possible for the same image
to be adapted and to be used in different infrastructures.
Typically, this procedure is different for each infrastructure we
target and is usually done by users or administrators. In the
case of cloud frameworks, users have to select or upload the
kernel and ramdisk images to be used, which require strong
knowledge of the OS. Hence they must either be experts in the
field or they have to spend a considerable amount of time to
accomplish this task. Moreover, after customizing the image,
it has to be registered in the framework for managing the



deployment of the image onto the selected infrastructure. In
bare-metal, this is usually restricted to system administrators
while in the cloud frameworks it can be done by any user.

b) Storing Abstract Images: Once we have created an
image, we have to store it into a repository. As there are
significant differences on how images are managed between
IaaS and bare-metal it is necessary to provide an image
repository in which we store abstract images that get further
modified in the registration process.

c) Registering Images: Once an image is created we
must register it with the infrastructure we intend to deploy it.
Image registration is typically provided in some form by the
underlying infrastructure. Nimbus, Eucalyptus, OpenStack, as
well as Moab/xCAT provide their own mechanisms for image
registration. However, the images need to be adapted to allow
utilizing them. Furthermore, we need to provide a significant
toolset to expose registration functionality in bare-metal to
non-administrators.

d) Instantiating Images: Once the image is registered
with the infrastructure, it can be instantiated by the user
as part of the deployment framework available within the
infrastructure.

IV. DESIGN

Our design targets an end-to-end workflow to support users
in creating abstract image management across different infras-
tructures easily. This includes images for Eucalyptus, Nimbus,
OpenStack, OpenNebula, Amazon, and bare-metal.

To summarize the idea behind our design, we prefer users
to be able to specify a list of requirements such as an OS,
an architecture, software, and libraries in order to generate
a personalized abstract image. This image is generic enough
that through manipulations it can be adapted for several IaaS
or HPC infrastructures with little effort by the users. It will
support the management of images for Nimbus [5], Eucalyptus
[6], OpenStack [7], and bare-metal HPC infrastructures as they
are either already deloyed in FG or going to be deployed as
in the case of OpenNebula [8].

It is obvious that such a capability is advantageous to
support repeatable performance experiments across a variety of
infrastructures. It supports the processes identified in Section
III to be able to manage the life cycle of images in a
transparent fashion. Within this paper, we focus our attention
on the first three processes as we have already described the
last one in [21].

Figure 2 shows the architecture of our image management
framework, which is capable of supporting the required pro-
cesses as identified in Figure 1. To support a modular design
we have devised a component for each process. This includes
an image generation component to create images following
user requirements, an image repository component to store,
catalog and share images, and an image registration component
for preparing, uploading and registering images into specific
infrastructures such as HPC or different clouds.

The architecture includes a convenient separation between
client and server components for allowing users to easily in-
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Fig. 2. FutureGrid Image Management Architecture.

teract with the hosted services that manage our processes. This
design allows users to access to the various processes via a
python API, a REST service, a convenient command line shell,
as well as a portal interface. The image management server
has the task to generate, store, and register the images with the
infrastructure. The image management server also interfaces
with external services, such as configuration management
services to simplify the configuration steps, authentication and
authorization, and a service to verify the validity of an image
including security checks.

One important feature in our design is how we are not
simply storing an image but rather focusing on the way
an image is created through abstract templating. Thus, it is
possible at any time to regenerate an image based on the
template describing the software stack and services for a given
image. This enables us also to optimize the storage needs for
users to manage many images. Instead of storing each image
individually, we could just store the template or a pedigree of
templates used to generate the images.

To aid storage reduction, our design includes data to assist
in measuring usage and performance. This data can be used
to purge rarely used images, while they can be recreated on-
demand by leveraging the use of templating. Moreover, the use
of abstract image templating will allow us to automatically
generate images for a variety of hypervisors and hardware
platforms on-demand. Autonomous services could be added
to reduce the time needed to create images or deploy them
in advance. Reusing images among groups of users and
the introduction of a cache as part of the image generation
will reduce the memory footprint or avoid the generation
all together if an image with the same properties is already
available.

In the next sections, we will describe in more detail the
various components.

A. Image Generation

The image generation provides the first step in our image
management process allowing users to create images according
to their specifications. As already mentioned, the benefit of
our image generation tools and services is that we are not just
targeting a single infrastructure type but a range of them.

The process is depicted in Figure 3. Users initiate the
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process by specifying their requirements. These requirements
can include the selection of the OS type, version, architecture,
software, services, and more. First, the image generation tool
searches into the image repository to identify a base image
to be cloned, and if there is no good candidate, the base
image is created from scratch. Once we have a base image, the
image generation tool installs the software required by the user.
This software must be in the official OS repositories or in the
FG software repository. The later contains software developed
by the FG team or other approved software. The installation
procedure can be aided by Chef [16]. After updating the image,
it is stored in the image repository and becomes available for
registration into one of the supported infrastructures. Our tool
is general to deal with installation particularities of different
OSes and architectures.

One feature of our design is to either create images from
scratch or by cloning already created base images we locate
in our repository.

In case we create an image from scratch, a single user
identifies all specifications and requirements. This image is
created using the tools to bootstrap images provided by the
different OSes, such as yum for CentOS and deboostrap for
Ubuntu. To deal with different OSes and architectures, we use
cloud technologies. Consequently, an image is created with all
user specified packages inside a VM instantiated on-demand.
Therefore, multiple users can create multiple images for differ-
ent operating systems concurrently; obviously, this approach
provides us with great flexibility, architecture independence,
and high scalability.

We can speed-up the process of generating an image by not
starting from scratch but by using an image already stored
in the repository. We have tagged such candidate images in
the repository as base images. Consequently, modifications
include installation or update of the packages that the user
requires. Our design can utilize either VMs or a physical
machine to chroot into the image to conduct this step.

Advanced features include the automatic upgrade or update
of images stored in the repository. The old image can be
deleted after the user verifies the validity of the new image.

TABLE I
METADATA INFORMATION ASSOCIATED TO THE IMAGES.

Field Name Description
imgId Unique identifier
owner Image’s owner
os∗ Operating system
description∗ Description of the image
tag∗ Image’s keywords
vmType∗ Virtual machine type
imgType∗ Aim of the image
permission∗ Access permission to the image
imgStatus∗ Status of the image
imgURI Image location
createdDate Upload date
lastAccess Last time the image was accessed
accessCount # times the image has been accessed
size Size of the image

∗ can be modified by users

B. Image Repository

The image repository [22] catalogs and stores images in a
unified repository. It offers a common interface for distinguish-
ing image types for different IaaS frameworks but also bare-
metal images. This allows us to include a diverse set of images
contributed not only by the FG development team but also by
the user community that generates such images and wishes
to share them. The images are augmented with information
about the software stack installed on them including versions,
libraries, and available services. This information is main-
tained in the catalog and can be searched by users and/or other
FG services. Users looking for a specific image can discover
available images fitting their needs using the catalog interface.
In addition, users can also upload customized images, share
them among other users, and dynamically provision them.
Through these mechanisms we expect our image repository
to grow through community contributed images.

Table I lists a subset of metadata associated with images
stored in the repository. This includes information about prop-
erties of the images, the access permission by users and the
usage. Access permissions allow the image owner to determine
who has access to the image. The simplest types of sharing
include private to owner, shared with the public or shared with
a set of people defined by a group/project. Usage information
is available as part of the metadata to allow information about
usage to be recorded. This includes how many times an image
was accessed and by whom.

The image repository is independent from the storage back-
end. It supports a variety of them and new plugins can be easily
created [22].

C. Image Registration

Once the image has been created and stored into the
repository, we need to register it into the targeted infrastructure
before we can instantiate it. Input parameters are simply the
image, the targeted infrastructure and the kernel. The kernel
is an optional requirement that allows advance users to select
the most appropriate kernel for their experiments. This tool
provides a list of available kernels organized by infrastructure.
Nevertheless, users may request support for other kernels like



Customize Image for:

OpenStack

Eucalyptus

Nimbus

OpenNebula

Amazon

Command Line Tools

Retrieve from
Image RepositoryUser's Image

Register Image in the 
Infrastructure

HPC

Image Customized for the selected 
Infrastructure

Image is Ready 
for Instantiation in 
the Infrastructure

Upload Image to the Infrastructure

Security Check

Requirements: Image, 
Kernel, Infrastructure

Fig. 4. Image Registration Process.

one customized by them. Registering an image also includes
the process of adapting it for the infrastructure. Often we
find differences between them requiring us to provide further
customizations, security check, the upload of the image to
the infrastructure repository, and registering it. The process of
adaptation and registration is depicted in Figure 4. These cus-
tomizations include the configuration of network IP, DNS, file
system table, and kernel modules. Additional configuration is
performed depending on the targeted deployed infrastructure.

In the HPC infrastructure the images are converted to
network bootable images to be provisioned on bare-metal ma-
chines. Here, the customization process configures the image,
so it can be integrated into the pool of deployable images
accessible by the scheduler. In our case this is Moab. Hence,
if such an image is specified as part of the job description
the scheduler will conduct the provisioning of the image for
us. These images are stateless and the system is restored by
reverting to a default OS once the running job requiring a
customized image is completed.

Images targeted for cloud infrastructures need to be con-
verted into VM disks. These images also need some additional
configuration to enable VM’s contextualization in the selected
cloud. Our plan is to support the main IaaS clouds, namely
Eucalyptus, Nimbus, OpenStack, OpenNebula, and Amazon
Web Service (AWS). As our tool is extensible, we can also
support other cloud frameworks.

Of importance is a security check for images to be registered
in the infrastructures. A separate process identifies approved
images, which are allowed to be instantiated in FutureGrid.
Approval can be achieved either by review or the invocation
of tools minimizing and identifying security risks at runtime.
Users may need to modify an image to install additional
software not available during the image generation process
or to configure additional services. Modified images need to
go through some additional tests before they can be registered
in the infrastructure. To perform these security tests, we plan
to create a platform for instantiating the images in a controlled
environment such as a VM with limited network access.

Hence, we can perform some tests to verify the integrity of the
image, detect vulnerabilities and possible malicious software.
If the image passes all the tests, it is tagged as approved.

To provide authentication and authorization images may
interface with the FG account management.

The process of registering an image only needs to be done
once per infrastructure. Therefore, after registering an image in
a particular infrastructure, it can be used anytime to instantiate
as many VMs or in case of HPC as many physical machines
as available to meet the users requirements.

V. IMPLEMENTATION

Our implementation uses xCAT [10], Moab [9] and Torque
[23] to manage HPC images. Although these tools should,
in theory, simplify the management, we found that readily
deployable patterns from Moab were not available. Further-
more, we identified hardware and operating system restrictions
imposed by xCAT. This motivates us for future development
to remove the dependencies of both xCAT and Moab while
targeting alternatives providing more suitable free and open-
source solutions. The internal cloud to manage concurrent
image generation processes is based on OpenNebula. In the
IaaS side, we have interfaced with Eucalyptus, OpenStack,
and OpenNebula. We target AWS and Nimbus. At this moment
only CentOS and Ubuntu are supported, but we plan to extend
this support to other OSes.

VI. EVALUATION

In this section, we describe our newest performance experi-
ments while focusing our attention on the analysis of the image
generator and image registration process. The performance of
the image repository was already evaluated earlier and the
results are available in [22].

Our performance study uses resources and services de-
ployed on FG. In particular, we used the FG India cluster,
which is composed by Intel Xeon X5570 servers with 24GB
of memory, a single drive 500GB with 7200RPMm 3Gb/s, and
an interconnection network of 1Gb Ethernet.

As part of this study, we configured the image management
components as follows:

• The image repository has been configured using Mon-
goDB [24] to store the image metadata. Cumulus [25] is
used to store the image files. This configuration was iden-
tified to be very good as part of our earlier experiments
with the image repository [22].

• To be able to generate images (see Section IV-A) in
parallel, we are using OpenNebula. Although we could
have used other IaaS frameworks, we chose OpenNebula
due to its ease of deployment as documented in [21].

• In order to support the image registration, we provide two
independent services: one registers images into a cloud,
and another registers them in the HPC infrastructures. The
later requires write access to the xCAT image directory
and execution permissions to use the xCAT client.
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• The image management client has been deployed in the
India FutureGrid machine (login node) and is accessible
to authorized users.

Next, we describe the tests performed and the results
obtained in each case. All tests have been performed three
times to obtain average results.

Image Generator: First, we studied the scalability of the
image generator tool. We performed experiments varying the
number of concurrent image generation requests (from one
to eight) to create CentOS images from scratch. As part of
these experiments, we increased the number of OpenNebula
compute nodes from one to four to highlight the scalability
of the service. Figure 5 shows the results of these tests. We
observe the overall performance using a single OpenNebula
compute node to be good as the minimum average wallclock
time to create an image with this setup is around six minutes
for a single request. When using the same node to handle eight
requests, we see an overall time of 16 minutes. To reduce
this time, we can increase the number of compute nodes to
distribute the workload on other nodes. Finally, we observe
a performance degradation when we generate more than two
images per compute node. Therefore, this limitation must be
considered when deploying our framework in production.

Next, we analyzed the time spent within the image creation
process. For these tests we used a single OpenNebula compute
node in order to better analyze the behavior of the different
steps involved in the image generation process. The results of
these tests are shown in Figure 6 (a) for CentOS and Figure
6 (b) for Ubuntu. This includes results for the sub processes
to (1) boot the VM, (2) generate the image, (3) compress the
image, and (4) upload the image to the repository.

In the Figure 6, we observe the virtualization layer intro-
duces significant overhead in the process (1). This overhead is
higher in the case of CentOS images and indicates our CentOS
golden image needs to be optimized to speed-up this phase.
The time to create the base image and the installation of the
software requested by the user is the most time consuming
in this process (2) and is worse for Ubuntu. In particular, the
overall time used for this phase is up to 69% for CentOS and
83% for Ubuntu. The remaining time for this phase is spent
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Fig. 6. Average wallclock time needed to process all image generation
requests with time associated to the different phases of the process.

on installing the software and packages requested by the user.
For this reason, we considered to manage base images that
can be used to save time during the image creation process.

This has been demonstrated and the results are shown in
Figure 7. We performed the image generation with help of a
caching policy for taking advantage of reusing base images
stored in our repository.

According to the results depicted in Figure 7, using a
base image as part of the creation process reduces the time
needed to complete this step dramatically. In particular, the
time to create an image has been reduced from six minutes
to less than two minutes for a single request. For the worst
case, we reduced the time from 16 minutes to less than
nine minutes, where we used one processors handling eight
concurrent requests. The reason is twofold: there is no need
to create the base image every time, and we do not need
to use the virtualization layer since the base image already
has the desired OS and only needs to be upgraded with the
software requested by the user. Thus, our tool can directly
retrieve and uncompress the base image to customize it with
users’ requirements. Once the image has been customized, it
is compressed and uploaded to the image repository.

The results show that the image repository we designed does
not cause a bottleneck as the time to upload the images to the
repository is negligible (see Figure 6 and 7).
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requests with time associated to the different phases of the process.

Image Registration: Next, we analyzed the behavior of the
image registration processes. For that, we registered the same
CentOS image in different infrastructures, namely OpenStack
(version Cactus configured with KVM hypervisor), Eucalyptus
(v2.03 configured with XEN hypervisor), and HPC (Moab
v6.0.3, xCAT 2, Torque v2.5.5). For Eucalyptus and Open-
Stack, we utilized concurrent registrations. In contrast, our
service to register images in the HPC infrastructure only
processes a single request at a time because it modifies critical
parts of our HPC infrastructure. Therefore, at this time it must
be performed in an atomic section.

The results of registering images are shown in Figure 8 (a)
for OpenStack and Figure 8 (b) for Eucalyptus. The figures
use a stacked bar chart to depict the time spent in each phase
of this process including (1) customization of the image, (2)
retrieval of the image after customization, and (3) the upload
and registration of the image to a cloud infrastructure. It is
to be noted that (1) is executed in the server side while (3)
is executed in the client side. The reason for this is based on
our authorization framework, as we need to use the user’s
credentials to upload and register the image to the cloud
infrastructure. Therefore, times associated with (2) represent
the time to send the image form the server to the client.

We observe the time needed to customize the image (1)
increases with the number of concurrent requests. Part of
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Fig. 8. Average wallclock time needed to register all images in the
infrastructure with time associated to the different phases of the process.

this activity includes uncompressing the images in the server
side to prepare them for being uploaded and registered with
the IaaS framework. In our experiment we are concurrently
processing all requests in the same machine. This setup has
been satisfying our demands on FG and did not result in
resource starvation and scalability issues. Additionally, we
introduced a parameter to limit the number of concurrent
requests that prevents overloading the service.

In our observations, the time to register an image in
OpenStack is higher than in Eucalyptus. This is based on
two factors. First, in OpenStack, we need to include certain
software to allow OpenStack to contextualize the VM during
the instantiation time (included in (1)). Second, the process to
upload the image to the OpenStack cloud takes longer than
in Eucalyptus (2). As part of this process, both frameworks
compress and split the image in smaller tgz files that are
uploaded to the IaaS server. The difference is that OpenStack
uncompresses the image in the server side as part of this
process, while Eucalyptus seems to maintain the compressed
version. Additionally, we have noticed occasionally OpenStack
fails to upload some images when we perform several concur-
rent requests. Consequently, images get stuck as part of the
untarring process and can never complete the uncompression.
While analyzing this problem further, we suspect it may relate
to a scalability issue of the messaging queue system within
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Fig. 9. Average walltime needed to register an image in the HPC infrastruc-
ture with time associated to the different phases of the process.

OpenStack. Another observation is that the logfiles generated
by OpenStack were not very helpful to debug this problem.

In Figure 9, we show the results obtained from registering
images in our HPC infrastructure utilizing Moab/xCAT. We
distinguish the following phases (see Section IV-C) : (1)
retrieve the image from the repository, (2) uncompress the
image, (3) retrieve kernels and update the xCAT tables, and
(4) package the image. To have minimal impact on other HPC
services, we decided to only process one request at a time.
We observe that the overall process only takes about two
minutes as no additional software is needed to be installed and
everything is executed on the server. The most time consuming
parts are uncompressing the image (2) and executing the xCAT
packimage command (4). This command creates a tar/cpio
image, which will be used to netboot bare-metal machines
when users request it. The final step of this process is the
registration of the image with Moab and recycling the Moab
scheduler. After this step, the image becomes available to
users.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the FutureGrid user con-
trolled image management framework as a revolutionary way
to handle images for different infrastructures spanning virtual-
ized and non-virtualized resources. It allows users to register
images, created by our software, for Nimbus, Eucalyptus,
OpenStack, OpenNebula, as well as bare-metal infrastructures.
With our framework, users are able to easily create and manage
customized environments within FG. This is achieved by
abstracting the details of each underlying infrastructure. Users
can with simple tools replicate software stack requirements on
the supported IaaS and bare-metal systems.

In our evaluation, we have identified the most time consum-
ing parts of our software. Our results show a linear increase in
response to concurrent requests. The image generation tool is
able to create images from scratch in only six minutes. When
modifying a base image, it allows us to generate images in
less than two minutes in many of our use cases. Additionally,
we can scale the performance by adding more nodes that are
used to generate the images. The image registration tool was
able to register images in any infrastructure in less than three
minutes. Indirectly we have also seen that our image repository
shows excellent behavior in our use cases and introduces only
negligible overhead to the overall processes.

We are currently working towards supporting Amazon and
Nimbus. Our plan also includes the integration of a messaging
queue system and portal interface to allow queuing of user’s
requests to process them in an asynchronous way. This will
introduce a more robust fault tolerant behavior for user access.
On-demand resource allocation for supporting peak access is
also part of this strategy. Our tools are currently used by a
selected number of users on FG.
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